Bi-invertible Maps

Table of Contents

1 Bi-invertible maps

module Lib.Data.BiInv where

This file defines accessors of bi-invertible maps.

1.1 Packages imports

The imported packages can be accessed via the following links:

import Stdlib.Prelude
import Lib.Data.Map  

1.2 is-bi-inv accessors

1.2.1 Of the left & right inverses

is-bi-inv/right-inv (A B : U) (f : A  B) (b : is-bi-inv A B f) : B  A =
  b.1.1

is-bi-inv/left-inv (A B : U) (f : A  B) (b : is-bi-inv A B f) : B  A =
  b.2.1  

1.2.2 Of the left & right homotopies

is-bi-inv/right-htpy (A B : U) (f : A  B) (b : is-bi-inv A B f) : Htpy B (λ_. B) (map/comp B A B f (is-bi-inv/right-inv A B f b)) (id B) =
  b.1.2

is-bi-inv/left-htpy (A B : U) (f : A  B) (b : is-bi-inv A B f) : Htpy A (λ_. A) (map/comp A B A (is-bi-inv/left-inv A B f b) f) (id A) =
  b.2.2

1.3 BiInv accessors

1.3.1 Of the underlying constructions

BiInv/map (A B : U) (b : BiInv A B) : A  B =
  b.1

BiInv/is-bi-inv (A B : U) (b : BiInv A B) : is-bi-inv A B (BiInv/map A B b) =
  b.2

1.3.2 Of the left & right inverses

BiInv/right-inv (A B : U) (b : BiInv A B) : B  A =
  is-bi-inv/right-inv A B (BiInv/map A B b) (BiInv/is-bi-inv A B b)

BiInv/left-inv (A B : U) (b : BiInv A B) : B  A =
  is-bi-inv/left-inv A B (BiInv/map A B b) (BiInv/is-bi-inv A B b)

1.3.3 Of the left & right homotopies

BiInv/right-htpy (A B : U) (b : BiInv A B) : Htpy B (λ_. B) (map/comp B A B (BiInv/map A B b) (BiInv/right-inv A B b)) (id B) =
  is-bi-inv/right-htpy A B (BiInv/map A B b) (BiInv/is-bi-inv A B b)

BiInv/left-htpy (A B : U) (b : BiInv A B) : Htpy A (λ_. A) (map/comp A B A (BiInv/left-inv A B b) (BiInv/map A B b)) (id A) =
  is-bi-inv/left-htpy A B (BiInv/map A B b) (BiInv/is-bi-inv A B b)

Author: Johann Rosain

Created: 2024-07-23 Tue 13:52

Validate