Homotopies Properties

Table of Contents

1 Homotopies Properties

module Lib.Prop.Htpy where

This file states some properties of homotopies.

1.1 Packages imports

The imported packages can be accessed via the following links:

import Stdlib.Prelude
import Lib.ContrMap
import Lib.FundamentalTheorem
import Lib.FunExt

1.2 Equivalence property

Homotopies are reflexive;

Htpy/refl (A : U) (B : A  U) (f : (x : A)  B x) : Htpy A B f f =
  λx. refl (B x) (f x)

Htpy'/refl (A B : U) : (f : A  B)  Htpy' A B f f =
  Htpy/refl A (λ_. B)

symmetric;

Htpy/sym (A : U) (B : A  U) (f g : (x : A)  B x) (H : Htpy A B f g) : Htpy A B g f =
  λx. inv (B x) (f x) (g x) (H x)

Htpy'/sym (A B : U) : (f : A  B)  (g : A  B)  Htpy' A B f g  Htpy' A B g f =
  Htpy/sym A (λ_. B)

Htpy/inv : (A : U)  (B : A  U)  (f g : (x : A)  B x)  (H : Htpy A B f g)  Htpy A B g f = Htpy/sym

Htpy'/inv : (A B : U)  (f g : A  B)  (H : Htpy' A B f g)  Htpy' A B g f = Htpy'/sym

1.3 The total homotopy is contractible

Remark that the total space Σ (g : (x : A) → B x) (f ∼ g) is contractible iff htpy-eq is a family of equivalences by the fundamental theorem of identity types. But we know that htpy-eq is a family of equivalences, thus the result follows.

Htpy/is-contr-total-htpy (A : U) (B : A  U) (f : (x : A)  B x) : is-contr (Σ ((x : A)  B x) (λg. Htpy A B f g)) =
  fundamental-theorem-id' ((x : A)  B x) (λg. Htpy A B f g) f
    (htpy-eq A B f) (htpy-eq/is-equiv A B f)

Author: Johann Rosain

Created: 2024-07-23 Tue 13:51

Validate